Décembre 2012

Exercice 1

 \mathscr{C} est la courbe représentative, dans un repère orthonormé $(O; \vec{i}, \vec{j})$, de la fonction f définie sur $\left[0; \frac{\pi}{2}\right]$ par $f(x) = \sin(x)$.

A est le point de coordonnées (1; 0) et M un point quelconque de \mathcal{C} , d'abscisse x.

Le but de l'exercice est de trouver la position de M sur $\mathscr C$ pour laquelle la distance AM est minimale.

- **1.** Démontrez que : $AM^2 = (x 1)^2 + \sin^2(x)$.
- **2.** On considère la fonction f définie sur $I = \left[0; \frac{\pi}{2}\right]$ par : $f(x) = (x-1)^2 + \sin^2(x)$.
- a) Calculez, pour tout x de I, f'(x) et f''(x).
- **b**) Déduisez de la question précédente les variations de *f*' et dressez son tableau de variation.
- c) Démontrez qu'il existe un unique nombre α de l pour lequel $f'(\alpha) = 0$.

Donnez un encadrement de α d'amplitude 10^{-1} .

- **3.** a) Déduisez de la question **2.** c) les variations de *f* et dressez son tableau de variation.
- b) Concluez.
- **4.** On note M_0 le point d'abscisse α .

Démontrez que la tangente en M_0 à la courbe $\mathscr C$ est perpendiculaire à la droite (AM $_0$).

Indications

- (1) On nayelle la formule suvonte cos² a - sm² a = cos(202)
- (2) Dans la question 2/a), il s'agina de <u>démontier</u> que f'est strictement crousante sur [0; 17/2]

Exercia 3

Donner la définition de lum $\beta(x) = +\infty$

Démontrer que lum VX = +00

Escercia 2

- **1.** f_1 est la fonction définie sur $[0; +\infty[$ par $f_1(x) = 2x 2 + \ln(x^2 + 1)$. Étudiez les variations de f_1 et dressez son tableau de variation.
- 2. n est un entier naturel non nul. On considère la fonction
- f_n définie sur $[0; +\infty[$ par $f_n(x) = 2x 2 + \frac{\ln(x^2 + 1)}{n}$
- a) Démontrez que la fonction f_n est strictement croissante sur $[0; +\infty[$.
- **b**) Démontrez que l'équation $f_n(x) = 0$ admet une unique solution α_n dans $[0; +\infty[$.
- c) Justifiez que pour tout n de \mathbb{N}^* , $0 < \alpha_n < 1$.
- **3.** Démontrez que pour tout n de \mathbb{N}^* , $f_n(\alpha_{n+1}) > 0$.
- **4.** a) Démontrez que la suite (α_p) est croissante.
- b) Déduisez-en qu'elle est convergente.
- c) Utilisez l'expression $\alpha_n = 1 \frac{\ln(\alpha_n^2 + 1)}{2n}$ pour déterminer la limite de la suite (α_n) .

(Cn) = (Cfn)

de C1 à C5

0.4

0.2

0.2

0.4

0.2

0.4

0.8

-0.8

Indication sout of whe forction

whichement crowsants our un intervalle

I, alors, your town reels a et & dans I

an a les Equivalence

a = b \lefter \beta(a) = \beta(b)

a < b \lefter \beta(a) < \beta(b)

a < b \lefter \beta(a) < \beta(b)