Escence 1

On note C l'ensemble des nombres complexes.

Le plan complexe est muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$. On prendra comme unité 2 cm sur chaque axe.

Le graphique sera fait sur une feuille de papier millimétré et complété au fur et à mesure des questions.

On considère la fonction f qui à tout nombre complexe z associe

$$f(z) = z^2 + 2z + 9.$$

- 1. Calculer l'image de $-1 + i\sqrt{3}$ par la fonction f.
- **2.** Résoudre dans \mathbb{C} l'équation f(z) = 5.

Écrire sous forme exponentielle les solutions de cette équation.

Construire alors sur le graphique, à la règle et au compas, les points A et B dont l'affixe est solution de l'équation (A étant le point dont l'affixe a une partie imaginaire positive).

On laissera les traits de construction apparents.

- 3. Soit λ un nombre réel. On considère l'équation $f(z) = \lambda$ d'inconnue z. Déterminer l'ensemble des valeurs de λ pour lesquelles l'équation $f(z) = \lambda$ admet deux solutions complexes conjuguées.
- 4. Soit (F) l'ensemble des points du plan complexe dont l'affixe z vérifie

$$|f(z) - 8| = 3.$$

Prouver que (F) est le cercle de centre $\Omega(-1\;;\;0)$ et de rayon $\sqrt{3}$. Tracer (F) sur le graphique.

- 5. Soit z un nombre complexe, tel que z = x + iy où x et y sont des nombres réels.
 - a. Montrer que la forme algébrique de f(z) est

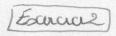
$$x^2 - y^2 + 2x + 9 + i(2xy + 2y)$$
.

b. On note (E) l'ensemble des points du plan complexe dont l'affixe z est telle que f(z) soit un nombre réel.

Montrer que (E) est la réunion de deux droites D_1 et D_2 dont on précisera les équations.

Compléter le graphique de l'annexe en traçant ces droites.

6. Déterminer les coordonnées des points d'intersection des ensembles (E) et (F).



Les parties A et B sont indépendantes

Un site internet propose des jeux en ligne.

Partie A:

Pour un premier jeu:

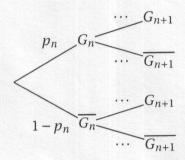
• si l'internaute gagne une partie, la probabilité qu'il gagne la partie suivante est égale à $\frac{2}{5}$.

• si l'internaute perd une partie, la probabilité qu'il perde la partie suivante est égale à $\frac{4}{5}$.

Pour tout entier naturel non nul n, on désigne par G_n l'évènement « l'internaute gagne la n-ième partie » et on note p_n la probabilité de l'évènement G_n .

L'internaute gagne toujours la première partie et donc $p_1 = 1$.

1. Recopier et compléter l'arbre pondéré suivant :



2. Montrer que, pour tout n entier naturel non nul, $p_{n+1} = \frac{1}{5}p_n + \frac{1}{5}$.

3. Pour tout *n* entier naturel non nul, on pose $u_n = p_n - \frac{1}{4}$.

a. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{5}$ et de premier terme u_1 à préciser.

b. Montrer que, pour tout n entier naturel non nul, $p_n = \frac{3}{4} \times \left(\frac{1}{5}\right)^{n-1} + \frac{1}{4}$.

c. Déterminer la limite de p_n .

Partie B:

Dans un second jeu, le joueur doit effectuer 10 parties.

On suppose que toutes les parties sont indépendantes.

La probabilité de gagner chaque partie est égale à $\frac{1}{4}$.

Soit X la variable aléatoire égale au nombre de parties gagnées par le joueur.

1. a. Quelle est la loi de probabilité suivie par la variable aléatoire X? Justifier.

b. Quelle est la probabilité que le joueur gagne au moins une partie? Le résultat sera arrondi à 10^{-2} près.

c. Déterminer l'espérance de X.

2. Le joueur doit payer $30 \in$ pour jouer les 10 parties. Chaque partie gagnée lui rapporte $8 \in$.

a. Expliquer pourquoi ce jeu est désavantageux pour le joueur.

b. Calculer la probabilité pour un joueur de réaliser un bénéfice supérieur à $40 \le ?$ Le résultat sera arrondi à 10^{-5} près.