Exercice 1

Les parties A et B sont indépendantes Partie A

- a) Soit u = -3 + 3i. Donner une écriture exponentielle de u
- b) Trouver z, sous forme exponentielle, tel que $u \cdot z = 6\sqrt{2} e^{i\frac{\pi}{12}}$ En déduire que $z = -1 - i\sqrt{3}$
- c) Déterminer les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et de $\sin\left(\frac{\pi}{12}\right)$ à l'aide de a) et b)

Partie B

1) Résoudre dans C l'équation $z^2 - 8z + 64 = 0$

Soit A, B, C, D, 4 points d'affixes respectives

$$z_A = 8$$
 $z_B = 8i$ $z_C = z_A e^{-i\frac{\pi}{3}}$ $z_D = z_B e^{2i\frac{\pi}{3}}$

- 2) Démontrer que $z_C = 4 4i\sqrt{3}$ et $z_D = -4\sqrt{3} 4i$.
- 3) Démontrer que A, B, C, D sont sur un même cercle dont on précisera le centre et le rayon
- 4) a)On note z_1 et z_2 les affixes respectives des vecteurs \overrightarrow{AC} et \overrightarrow{BD} Démontrer que $z_2=z_1\sqrt{3}$
 - b) On note z_3 et z_4 les affixes respectives des vecteurs \overrightarrow{AB} et \overrightarrow{DC} Calculer |z₃| et |z₄|
 - c) Démontrer que ABDC est un trapèze isocèle
- 5) On admet que $(\overrightarrow{AB}, \overrightarrow{CD}) = \text{Arg}(\frac{z_D z_C}{z_B z_A})$ modulo 2π

On note I le point d'intersection des droites (AB) et (CD) Déterminer la mesure principale de $(\overrightarrow{IB}, \overrightarrow{ID}) = (\overrightarrow{AB}, \overrightarrow{CD})$ Exercise 2

Le plan est muni d'un repère orthonormal direct $\left(0,\overrightarrow{u},\overrightarrow{v}\right)$. On prendra 2 cm pour unité graphique.

On considère l'application F du plan dans lui même qui, à tout point M d'affixe z, associe le point M' d'affixe z' tel que :

$$z' = (1+i)z + 2.$$

- Soit A le point d'affixe -2 + 2i.
 Déterminer les affixes des points A' et B vérifiant respectivement A' = F(A) et F(B) = A.
- 2. Méthode de construction de l'image de M.
 - a. Montrer qu'il existe un point confondu avec son image. On notera Ω ce point et ω son affixe. (Nous démontions que $\omega = 2i$)
 - **b.** Établir que pour tout complexe z distinct de ω , $\frac{z'-z}{\omega-z}=-i$. Soit M un point distinct de Ω .

Comparer MM' et $M\Omega$ (On admet que $(M\Omega, MM') = -\mathbb{T}/2$ a $2k\mathbb{T}$ pres) En déduire une méthode de construction de M' à partir de M.

- 3. Étude de l'image d'un ensemble de points.
 - a. Donner la nature et les éléments caractéristiques de l'ensemble Γ , des points du plan dont l'affixe z vérifie $|z+2-2\mathrm{i}|=\sqrt{2}$. Vérifier que B est un point de Γ .
 - b. Démontrer que, pour tout z élément de $\mathbb C$

$$z'+2=(1+i)(z+2-2i).$$

Démontrer que l'image par F de tout point de Γ appartient au cercle Γ' de centre A' et de rayon 2.

Placer O, A, B, A', Γ et Γ' sur une même figure.

